\_\_\_\_\_Exam Seat No: \_\_\_\_\_

## C.U.SHAH UNIVERSITY Summer Examination-2018

## Subject Name: Number Theory

| Subject Code: 5SC04 | 4NUT1            | Branch: M.Sc. (Mathematics) |           |
|---------------------|------------------|-----------------------------|-----------|
| Semester: 4         | Date: 03/05/2018 | Time: 10:30 To 01:30        | Marks: 70 |

## **Instructions:**

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

## SECTION – I

| Q-1        |    | Attempt the following questions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|            | a. | Findgcd(306,657).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (02) |
|            | b. | If $ca \equiv cb \pmod{n}$ and $gcd(c, n) = 1$ , then prove that $a \equiv b \pmod{n}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (02) |
|            | c. | State fundamental theorem of arithmetic.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (01) |
|            | d. | Calculate: $\phi(360)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (01) |
|            | e. | If p is a prime and $p ab$ , then $p a$ or $p b$ . Determine whether the statement is True or False.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (01) |
| Q-2        |    | Attempt all questions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (14) |
|            | a. | Define: Mobious function. Prove that Mobious function is multiplicative function.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (05) |
|            | b. | State and prove fundamental theorem of divisibility.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (05) |
|            | c. | Prove that $\tau(n)$ is an odd integer if and only if n is a perfect square.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (04) |
|            |    | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
| Q-2        |    | Attempt all questions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (14) |
|            | a. | State and prove Euclidean algorithm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (05) |
|            | b. | Let $N = a_0 + a_1 10 + a_2 10^2 + \dots + a_m 10^m$ be the decimal expansion of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (05) |
|            |    | positive integer $N, 0 \le a_k < 10$ , and let $S = a_0 + a_1 + \dots + a_m$ . Then prove that $9 N$ if and only if $9 S$ . Is 1571724 divisible by 9? Justify.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|            | c. | If $p_n$ is the $n^{th}$ prime numbers, then prove that $p_n < 2^{2^n}$ , $\forall n$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (04) |
| <b>Q-3</b> |    | Attempt all questions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (14) |
| -          | a. | State Chinese remainder theorem. Solve the system of three congruences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (05) |
|            |    | $x \equiv 1 \pmod{3}, x \equiv 2 \pmod{5}, x \equiv 3 \pmod{7}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
|            | b. | Prove that for any choice of positive integers $a$ and $b$ , $lcm(a, b) = ab$ if and only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (05) |
|            |    | $\operatorname{ifgcd}(a,b) = 1.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
|            | c. | Find highest power of 3 that divides 81!.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (02) |
|            | d. | Let x and y be real numbers. Then prove that $( - 0 - if y i g an integrate a grade a$ | (02) |
|            |    | $[x] + [-x] = \begin{cases} 0, & if x is an integer \\ 1, & otherwise \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
|            |    | -1, otherwise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
|            |    | UK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |



| Q-3        |         | Attempt all questions                                                                                                                                              | (14) |
|------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| -          | a.      | If $2^k - 1$ is prime $(k > 1)$ , then prove that $n = 2^{k-1}(2^k - 1)$ is perfect and every                                                                      | (05) |
|            |         | even perfect number is of the form.                                                                                                                                |      |
|            | b.      | Solve: $9x \equiv 21 \pmod{30}$ .                                                                                                                                  | (05) |
|            | c.      | Find the number of multiple of 11 among the integer $300$ to 1000.                                                                                                 | (02) |
|            | d.      | If p is prime and $k > 0$ , then prove that $\phi(p^k) = p^k \left(1 - \frac{1}{p}\right)$ .                                                                       | (02) |
|            |         | SECTION – II                                                                                                                                                       |      |
| Q-4        |         | Attempt the following questions                                                                                                                                    | (07) |
|            | a.      | Compute the convergents of the simple continued fraction $[8; 1, 1, 2]$ .                                                                                          | (02) |
|            | b.      | Express the rational number $\frac{19}{51}$ in finite simple continue fraction.                                                                                    | (02) |
|            | c.      | Define: Algebraic number.                                                                                                                                          | (01) |
|            | d.      | Define: Index of $a$ relative to $r$ .                                                                                                                             | (01) |
|            | e.      | State Wilson's theorem.                                                                                                                                            | (01) |
| 0-5        |         | Attempt all questions                                                                                                                                              | (14) |
| ×۲         | a.      | Prove that if $c_k = \frac{p_k}{p_k}$ is the $k^{th}$ convergent of the finite simple continued                                                                    | (05) |
|            |         | fraction $[a, a, a, a]$ there $a_{k} = (1)^{k-1}$ $1 \le k \le n$                                                                                                  |      |
|            | h       | naction $[u_0, u_1, u_2,, u_n]$ , then $p_k q_{k-1} = q_k p_{k-1} = (-1)^{-1}$ , $1 \le k \le n$ .                                                                 | (05) |
|            | р.<br>С | Solve the linear Diophantine equation $172r + 20v = 1000$                                                                                                          | (03) |
|            | ι.      | OR                                                                                                                                                                 | (04) |
| Q-5        |         | Attempt all questions                                                                                                                                              | (14) |
|            | a.      | Let x be an arbitrary irrational number. If the rational number $\frac{a}{b}$ , where $b \ge 1$ and                                                                | (05) |
|            |         | $gcd(a, b) = 1$ , satisfies $\left  x - \frac{a}{c} \right  < \frac{1}{c}$ then prove that $\frac{a}{c}$ is one of the convergent                                  |      |
|            |         | $p_n$ in the continued fraction representation of $a$                                                                                                              |      |
|            |         | $\frac{1}{q_n}$ in the continued fraction representation of x.                                                                                                     |      |
|            | b.      | Find all relatively prime solution of the equation $x^2 + y^2 = z^2$ with $0 < z < 30$ .                                                                           | (05) |
|            | c.      | Find all primitive roots of 17.                                                                                                                                    | (04) |
| <b>O-6</b> |         | Attempt all questions                                                                                                                                              | (14) |
|            | a.      | Let n be a positive rational integer and $\xi$ a complex number. Suppose that the                                                                                  | (05) |
|            |         | complex numbers $\theta_1, \theta_2, \theta_3, \dots, \theta_n$ , not all zero, satisfy the equation                                                               |      |
|            |         | $\xi \theta_j = a_{j,1} \theta_1 + a_{j,2} \theta_2 + a_{j,n} \theta_n, \qquad j = 1,2,3, \dots$                                                                   |      |
|            |         | where the $n^2$ coefficients $a_{j,i}$ are rational. Then prove that $\xi$ is an algebraic                                                                         |      |
|            |         | number. Moreover, if the $a_{j,i}$ are rational integers, $\xi$ ia an algebraic integer.                                                                           |      |
|            | b.      | If $\frac{p_k}{q_k}$ are the convergents of the continuous fraction expansion of $\sqrt{d}$ , then prove                                                           | (05) |
|            |         | that $p_k^2 - dq_k^2 = (-1)^{k+1} t_{k+1}$ where $t_{k+1} > 0, k = 0, 1, 2,$                                                                                       |      |
|            | c.      | Prove that the norm of a product equals the product of the norms in $Q(\sqrt{m})$ .                                                                                | (04) |
|            |         | OR                                                                                                                                                                 |      |
| Q-6        |         | Attempt all questions                                                                                                                                              | (14) |
|            | a.      | Prove that the product of two primitive polynomial is primitive.                                                                                                   | (05) |
|            | b.      | If p is prime and $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ , $a_n$ is incongruent                                                                  | (05) |
|            |         | to 0 modulo p, is a polynomial of degree $n \ge 1$ with integral coefficients, then<br>prove that $f(x) = 0 \pmod{n}$ has at most n incongruent solutions module n |      |
|            | ſ       | Prove that if an irreducible polynomial $n(r)$ divides a product $f(r)a(r)$ then                                                                                   | (04) |
|            | ι.      | p(x) divides at least one of the polynomial $f(x)$ and $g(x)$                                                                                                      |      |
| c.         | c.      | Prove that if an irreducible polynomial $p(x)$ divides a product $f(x)g(x)$ , then $p(x)$ divides at least one of the polynomial $f(x)$ and $g(x)$ .               | (04) |

